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Abstract
A 5-bit CMOS attenuator with low temperature and pro-
cess variations is presented employing the proposed opti-
mization and compensation technique to achieve low
root mean square (RMS) attenuation error and phase vari-
ation. The proposed design technique includes optimiz-
ing ratio of transistors and attenuation resistors to reduce
the temperature and process variations, and utilizing a
temperature and process compensation circuitry to further
minimize the chip-to-chip and channel-to-channel varia-
tions. The presented attenuator is fabricated in a 55 nm
CMOS process and achieves a maximum attenuation of
15.5 dB with 0.5 dB-per-step resolution. Measurement
results show that the maximum RMS attenuation error is
0.6 dB and phase variation is less than �2.2�, from �45
to 85�C and between different chips or channels within
frequency range from 25 to 32 GHz. The core area is
0.32 � 0.5 mm2 excluding pads.
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1 | INTRODUCTION

Attenuators are widely used as an amplitude control and gain
control block in transmitter (TX) of phased-array systems.1–4

The performance of attenuator can be affected by process
deviation and temperature variation, incurring poor attenua-
tion error and phase variation between different chips and
TX/RX channels, and hence prefers compensation for the
PVT.5–9 In addition, in conventional switched Pi/T attenua-
tors, CMOS and BiCMOS transistor switches are adopted as
variable resistors to achieve a fine resolution, which further
deteriorate the RMS attenuator error and transmission phase
variation over PVT.10–13 To an optimization and compensa-
tion technique, to limit the temperature and process varia-
tions of each attenuation block, with a precision adjustable
compensation circuitry employed to compensate for the
attenuator error and phase variation over PVT.

In this letter, a 5-bit per-step differential attenuator with
low temperature and process variations is demonstrated. Mea-
surement results show that the maximum RMS attenuation
error is 0.5 dB and phase variation is less than �2.2�, from
�45 to 85�C within frequency range from 25 to 32 GHz.

2 | REALIZATION OF THE
PROPOSED TECHNIQUE

Figure 1A shows the block diagram of the proposed design, a
0.5 dB-per-step differential attenuator with a precision adjust-
able compensation circuitry. The control voltages VC and VC
switch between zero and the compensation voltage respectively,
turning OFF or turning ON the individual attenuation block.

The proposed attenuator consists of five cascade attenua-
tion blocks with inductive compensation network.14–16 The
cascade attenuation is implemented in binary weight with
least significant bit) of 0.5 dB and most significant bit) of
4 dB block for the T-type, as well as a Pi-type 8 dB attenua-
tion.17–20 The T-type and Pi-type attenuation blocks are com-
posed of switching shunt/series transistors, attenuation
resistors and compensation inductors, as shown in Figure 1B.
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Figure 1C shows the equivalent circuits of Pi-type attenu-
ation block in the reference state and attenuation state. The
8 dB attenuation block is the dominant factor that affects
the performance of the attenuator.20,21 Ron1 and Ron2 represent
the on-resistance of the series/shunt transistors M1 and M2.
Coff1, Coff2 is the off-capacitance of M1 and M2. The transmis-
sion phase variation is introduced by the non-zero off capaci-
tance, and can be written as Equation (1). Z0 is the
characteristic impedance:

Δφ¼ tan�1ω

Coff1 1þ Ron2þRp

Z0
2

� �
�2Coff2 Ron2þRp

� �
Ron1þRsð Þ Ron1Rs

Ron1þRsð ÞZ0
2þ1

h i
Ron2þRp
� �

Ron1Rs

ð1Þ
The insertion loss is determined by Rs and Ron1 in the

reference state, as shown in Equation (2).

S21,ref ≈
1

1þ RsRon1
2Z0 RsþRon1ð Þ

ð2Þ

And the 8 dB attenuation is realized by the series/shunt
attenuation resistors Rs and Rp, and the relative attenuation
can be expressed by Equation (3).

ΔS21 ¼

RsþRon1ð ÞZ0 2þ Rs
Z0
þ 2Rs

Ron2þRpð Þþ
Z0

Ron2þRpð Þ 2þ Rs

Ron2þRpð Þ
� �� 	
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To achieve good impedance matching, S11 of the refer-
ence state can be minimized by using large M1 transistor.
While in the attenuation state, S11 is determined by Rs and
Rp, and can be calculated as,

S11,att ¼
1
Z0

Rs RpþRon2
� ��2Z2

0


 �þ Z0Rs

RpþRon2ð Þ
RpþRon2
� �

2þ Rs
Z0

� �
þ2 RsþZ0ð Þ Z0

RpþRon2ð Þ2
ð4Þ

However, the switching performance of transistors, such
as Ron, Coff and VTH, is dependent on the process deviation
and temperature variation, which further degrade the PVT
performance of attenuator.22 A method of optimization is
proposed in this letter to address the above issues.

Figure 2 illustrates the optimization procedure. First, the
sizes of the switching transistors are determined through
temperature simulations as shown in Figure 3A. Given that
the series transistor M1 with a large W/L ratio can reduce
insertion loss and reflection attributed to low Ron1, at the cost
of phase variation degradation due to the high Coff1, and the
shunt transistor M2 with a small size minimizes the phase
variation due to low Coff2 at the cost of high Ron2 which
degrades the PVT performance. The optimized procedure
includes:

1. The initial values of on-resistance Ron1 and Ron2 are set
to 5 Ω (gate width of 130 μm) and 15 Ω (gate width of
50 μm), respectively. In order to ensure low insertion
loss and reflection, the initial value of series resistor Rs

is set to 0 Ω and the incremental step is 4 Ω. Combina-
tions of Ron1/Rs and Ron2/Rp can be obtained.

2. A trade-off is made between attenuation and phase vari-
ation at center frequency of 28.5 GHz in this work, as
shown in Figure 3B,C.

3. Note that the attenuation error of less than 1% and phase
error of less than 2� are the design goals in this work,
and simulations in Figure 3B,C verify that the worst case
corners meet this specification. The optimum ratios of
Ron1/Rs and Ron2/Rp are found to be 8 Ω/12 Ω
and 8 Ω/93 Ω.

The series transistor M1 of 90 μm (Ron1 = 8 Ω) with Rs

of 12 Ω, and the shunt transistor M2 of 90 μm (Ron2 = 8 Ω)
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FIGURE 1 (A) Block diagram of the proposed attenuator.
(B) Topologies of 5-bit differential step attenuation blocks T-type
attenuation block and Pi-type attenuation block. (C) Equivalent circuits
of Pi-type attenuator in the reference and attenuation states [Color
figure can be viewed at wileyonlinelibrary.com]
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with Rp of 93 Ω for the 8 dB cell are used in this design. The
parameters of the proposed attenuator are summarized in
Table 1.

Based on the above optimization, the presented attenua-
tor shows a small RMS attenuation error and phase variation
by designing with the optimum ratio over PVT. In order to
further improve the performance, a precision adjustable
compensation circuitry that tunes the gate-to-source voltage
is employed.

Equations (5) and (6) show the derivative of the on-
resistance Ron with respect to temperature T, and threshold
voltage VTH as a function of T, respectively, where M is con-
stant and VTH (Ta) is the threshold voltage at room tempera-
ture Ta.

∂Ron Tð Þ
∂T

¼
∂ μnCoxW=L VGS�VTH Tð Þð Þ½ ��1
n o

∂T
ð5Þ

VTH Tð Þ¼VTH Tað Þ�M T�Tað Þ ð6Þ
Setting Equation (5) to be zero and solve for Equa-

tion (6), the targeted compensation voltage VGS can be
obtained as shown in Equation (7), where N and C are con-
stant and determined by simulation, as used in the proposed
compensation circuitry.

VGS Tð Þ≈NTþC ð7Þ
Figure 4A shows the schematic of precision adjustable

compensation circuitry, which consists of an operational
amplifier, a 4-bit output DAC and BJT transistors Q1, Q2.
The size ratio of Q1 and Q2 is 1/n, Ic1 and Ic2 are collector

current of Q1 and Q2. So Ic2 equals to nIc1, the base–emitter
voltages VBE of Q1 and Q2 as shown in Equation (8) and
(9), where IS and VTH are reverse saturation current
and threshold voltage, respectively, VTH equals to KT/q:

VBE1 ¼VTH ln Ic1=IS

� � ð8Þ

VBE2 ¼VTH ln Ic2=IS

� � ð9Þ

The operational amplifier is used to make voltage VX

equal to VY, the source voltage VDD is constant voltage of
2.5 V. The base–emitter voltage difference ΔVBE can be
obtained as shown in Equation (10). Therefore, the propor-
tional to absolute temperature current ΔI can be given in
Equation (11), and through a 4-bit output DAC, the targeted
compensation voltage VGS can be obtained. The values of
n and R can be determined by simulation.

ΔVBE ¼VBE1�VBE2 ¼VTH ln nð Þ ð10Þ

ΔI¼ΔVBE

R
¼KT

qR
ln nð Þ ð11Þ

Figure 4B shows the simulated results of Ron with fixed
VGS and variable VGS, respectively. The variable VGS is
effective on stabilizing Ron over PVT. Figure 4C shows the
output voltages of the compensation circuitry at all 16 states
from �45 to 85�C, and the output voltage increases linearly
from 0.74 V at �45�C to 1.2 V at 85�C.

The simulated RMS attenuation error of the proposed
attenuator with the proposed compensation circuitry and
conventional circuitry over different corners is shown in
Figure 4D. The RMS attenuation error of the conventional

FIGURE 2 Flow chart of calculating the Ron1, Ron2, Rs and Rp
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FIGURE 3 (A) Temperature simulations of Ron from �45 �C to 85
�C and different combinations of (B) Ron1 and Rs (C) Ron2 and Rp over
corners [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Component values for designed the proposed attenuator

Atten. Type Rs/Rp (Ω) W1 (μm)/L1 (nm) W2 (μm)/L2 (nm) L (pH)

0.5 dB Bridged-T 16/200 80/55 80/55 0

1 dB Bridged-T 25/180 90/55 80/55 80

2 dB Bridged-T 38/75 75/55 75/55 130

4 dB Bridged-T 42/65 75/55 85/55 220

8 dB Pi 12/93 90/55 90/55 300
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wileyonlinelibrary.com]
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attenuator is 1.4 and 1.1 dB at fast corner and slow corner
respectively, at 28.5 GHz, with constant bias voltage. The
RMS attenuation error of the proposed attenuator is 0.3 and
0.15 dB at fast corner and slow corner, at 28.5 GHz, respec-
tively. The proposed compensation circuitry exhibits much
better performance compared with the conventional counter-
part over PVT corners.

3 | MEASUREMENT RESULTS

The attenuator core area excluding pads is 0.32 � 0.5 mm2,
as shown in Figure 5A. The measurement setup is shown in
Figure 5B. Figure 5C,D shows the measured relative attenu-
ation and the measured input return loss across all 32 states
at room temperature. The root mean square (RMS) attenua-
tion error and RMS transmission phase error of different
chips across all 32 states from �45 to 85�C, are measured as
shown in Figure 5E-G. The RMS attenuation error is less
than 0.6 dB and the RMS phase error is less than 2.2� over
different chips. The proposed technique compensates for
temperature and process variations and Table 2 compares the
performance of the proposed attenuator with other state-of-
the-art. This work achieves both low RMS attenuation error
and phase variation over process and temperature deviations
from 25 to 32 GHz.

4 | CONCLUSION

The 5-bit per-step differential attenuator utilizing the pro-
posed technique in a 55-nm CMOS process is presented in
this paper. The 5-bit per-step differential attenuator shows
that the RMS phase error is less than 2.2�, and the RMS
attenuation error is less than 0.6 dB from �45 to 85�C, at
25 to 32 GHz. The proposed attenuator can effectively

achieve low transmission phase variation and RMS attenua-
tion error over temperature and process variations.
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